Ph.D Qualifying Exam
APPLIED DIFFERENTIAL EQUATIONS
Fall 2001

MS: Do any 4 of the following 7 problems
Ph.D.: Do any 6 of the following 7 problems.

1. Consider the initial value problem \(u_t = a(u) \) with \(u(0) = u_0 \).
 (i) Work out an example of the function \(a(u) \) for which the solution \(u \) blows up in finite time.
 (ii) Work out an example of the function \(a(u) \) for which the solution \(u \) is not unique.
 (iii) Describe conditions on the function \(a(u) \) so that the solution \(u \) is unique and exists for all time. Justify your answer.

2. Consider the differential operator

\[
L = (d/dx)^2 + 2(d/dx) + \alpha(x)u
\]

in which \(\alpha \) is a real-valued function. The domain is \(x \in [0, 1] \), with Neumann boundary conditions \(du/dx(0) = du/dx(1) = 0 \).
 (i) Find a function \(\phi = \phi(x) \) for which \(L \) is self-adjoint in the norm

\[
||u||^2 = \int_0^1 u^2 \phi dx
\]

 (ii) Show that \(L \) must have a positive eigenvalue if \(\alpha \) is not identically zero and

\[
\int_0^1 \alpha(x)dx \geq 0.
\]

3. Let \(u = u(x, t) \) solve the following PDE in three spatial dimensions

\[
\Delta u = 0
\]

for \(R_1 < r < R(t) \), in which \(r = |x| \) is the radial variable, with boundary conditions \(u(r = R(t), t) = 0 \) and \(u(r = R_1, t) = 1 \). In addition assume that \(R(t) \) satisfies

\[
dR/dt = -\partial u/\partial r(r = R)
\]

with initial condition \(R(0) = R_0 \) in which \(R_0 > R_1 \).
 (i) Find the solution \(u(x, t) \).
 (ii) Find an ODE for the outer radius \(R(t) \).
4. For the ODE
\[\rho_t = \rho (1 - \rho) \]

do all of the following:
- a) Analyze the type of all stationary points.
- b) Find a conserved energy.
- c) Draw a the phase plane diagram.

5. Consider the system
\[f_t + f_x = (h^2 - fg) \]
\[g_t - g_x = (h^2 - fg) \]
\[h_t = -(h^2 - fg) \]

 a) Find two conserved quantities for this system.
 b) Look for a traveling wave solution in which \((f, g, h) = (f(x - st), g(x - st), h(x - st))\), in which \(|s| < 1\), and find a system of three ODEs for this special solution.
 c) Reduce the system of ODEs for the traveling wave to a single ODE for \(h\).
 d) Show that the resulting ODE has solutions of the form
\[h = h_0 + h_1 \tanh(\alpha x + x_0) \]
in which \(h_0, h_1, \alpha\) and \(x_0\) are constants.

6. Use the method of characteristics to solve the following partial differential equation in parametric form:
\[\frac{\partial u}{\partial t} - u \frac{\partial u}{\partial x} = 3u, \quad u(x, 0) = u_0(x). \]

7. Consider the parabolic problem
\[u_t = u_{xx} + c(x)u \]

for \(-\infty < x < \infty\), in which
\[c(x) = 0 \quad \text{for} \quad |x| > 1 \]
\[c(x) = 1 \quad \text{for} \quad |x| < 1. \]

Find solutions of the form \(u(x, t) = e^{\lambda t}v(x)\) in which \(\int_{-\infty}^{\infty} |u|^2 dx < \infty\). (Hint: Look for \(v\) to have the form \(a \exp -k|x|\) for \(|x| > 1\) and \(b \cos \ell x\) for \(|x| < 1\) for some \(a, b, k, \ell\).)