Algebra Qualifying Exam
Winter 2002

Everyone must do two problems in each of the four sections. If three problems of a section are tried, only two problems of highest score count (the lowest score is ignored). On multiple part problems, do as many parts as you can; however, not all parts count equally.

Groups
A1. Let \(G \) be a free abelian group of rank \(n \) for a positive integer \(n \) (therefore \(G \cong \mathbb{Z}^n \) as groups).
 (a) Prove for a given integer \(m > 1 \), there are only finitely many subgroups \(H \) of index \(m \) in \(G \);
 (b) Find a formula of the number of subgroups of \(G \) of index 3. Justify your answer.
A2. Prove or disprove: there exists a finite abelian group \(G \) whose automorphism group has order 3.
A3. Let \(S \) and \(G \) be \(p \)-groups (with \(G \neq \{e\} \)), and assume that \(S \) acts on \(G \) by automorphisms. Show that the fixed subgroup \(G^S = \{g \in G| s(g) = g \text{ for all } s \in S\} \) is non-trivial (i.e., is not the trivial subgroup \(\{e\} \)).

Rings
B1. Let \(F \) be a field and \(A \) be a commutative \(F \)-algebra. Suppose \(A \) is of finite dimension as a vector space of \(F \).
 (a) Prove all prime ideals of \(A \) are maximal. Hint: consider maps \(R/P \to R/P \) (\(P \) prime) of the form \(x \to ax \) with \(a \) in \(R \).
 (b) Prove that there are only finitely many maximal ideals of \(A \).
B2. Let \(A = M_n(F) \) be the ring of \(n \times n \) matrices with entries in an infinite field \(F \) for \(n > 1 \). Prove the following facts:
 (a) There are only 2 two-sided ideals of \(A \);
 (b) There are infinitely many maximal left ideals of \(A \). Hint: show that \(Ax = Ay \) (\(x, y \in A \)) if and only if \(\text{Ker}(x) = \text{Ker}(y) \).
B3. Let \(\mathbb{F}_2 \) be the field with 2 elements and \(A = \mathbb{F}_2[T, \frac{1}{T}] \) for an indeterminate \(T \). Prove the following facts:
 (a) The group of units in \(A \) is generated by \(T \).
 (b) There are infinitely many distinct ring endomorphisms of \(A \).
 (c) The ring automorphism group \(\text{Aut}(A) \) is of order 2.
Fields

C1. The discriminant of the special cubic polynomial \(f(x) = x^3 + ax + b \) is given by \(-4a^3 - 27b^2\). Determine the Galois group of the splitting field of \(x^3 - x + 1 \) over
(a) \(\mathbb{F}_3 \), the field with 3 elements.
(b) \(\mathbb{F}_5 \), the field with 5 elements.
(c) \(\mathbb{Q} \), the rational numbers.

C2. A field extension \(K/\mathbb{Q} \) is called biquadratic if it has degree 4 and if \(K = \mathbb{Q}(\sqrt{a}, \sqrt{b}) \) for some \(a, b \in \mathbb{Q} \).
(a) Show that a biquadratic extension is normal with Galois group \(\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) and list all sub-extensions.
(b) Prove that if \(K/\mathbb{Q} \) is a normal extension of degree 4 with \(\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) then \(K/\mathbb{Q} \) is biquadratic.

C3. Let \(K \) be a finite extension of the field \(F \) with no proper intermediate subfields.
(a) If \(K/F \) is normal, show that the degree \([K; F] \) is a prime.
(b) Give an example to show that \([K; F] \) need not be prime if \(K/F \) is not normal, and justify your answer.

Linear Algebra

D1. Let \(J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \) where \(I \) is the \(n \times n \) identity matrix. Suppose that \(S \) is a \(2n \times 2n \) symplectic matrix, meaning that \(S \) is real and satisfies \(^tSJS = J \), where \(^tS \) is the transpose of \(S \).
(a) Show that \(^tS \) is symplectic.
(b) Show that \(S \) is similar to \(S^{-1} \).
(c) It is always true that det \(S = 1 \). Prove this in case \(n = 1 \).

D2. Suppose that \(A \) is a linear operator on the vector space \(\mathbb{C}^n \) and that \(v \in \mathbb{C}^n \) satisfies \((A - aI)^2v = 0 \) for some \(a \in \mathbb{C} \), so that \(v \) is a generalized eigenvector of \(A \) with eigenvalue \(a \). Suppose that \(|a| < 1 \). Show that
\[
\|A^m v\| \to 0
\]
as \(m \to \infty \), where \(\|\cdot\| \) is the Euclidean norm on \(\mathbb{C}^n \).

D3. Let the \(n \times n \) matrix \(A \) be defined over the field \(F \). Suppose that \(A \) has finite order:
\[
A^m = I
\]
for some positive integer \(m \).
(a) If the characteristic of \(F \) is 0, show that \(A \) may be diagonalized over \(F \).
(b) Show that the conclusion of (a) is not true for an arbitrary field \(F \).