Algebra Qualifying Exam (Spring 2004)

Test Instructions: Everyone must do two problems in each of the four sections. If three problems of a section are tried, only the two problems of highest score count (the lowest score is ignored). On multiple part problems, do as many parts as you can; however, not all parts count equally.

GROUP THEORY

PROBLEM 1.

A group G is said to act transitively on a set S if for any element $s \in S$, then

$$S = Gs.$$

Suppose G is finite and that G acts transitively on S. Let $f(g)$ be the number of elements of S fixed by the action of $g \in G$ on S. Prove

$$|G| = \sum_{g \in G} f(g).$$

PROBLEM 2.

Classify all groups of order $2 \cdot 7 \cdot 11$.

PROBLEM 3.

Let G be a finite group and H a subgroup of G. Let $n = (G : H)$ be the index of H in G.

(a) Show that

$$(G : \bigcap_{x \in G} xHx^{-1})$$

is a factor of $n!$.

(b) Suppose that the index $(G : H)$ is the minimal prime factor of the order of G. Show H is a normal subgroup.
RING THEORY

PROBLEM 1.
Let \(R \) be a commutative noetherian ring with unity 1 and \(f : R \to R \) a surjective ring homomorphism, i.e. \(f(R) = R \). Show \(f \) is an isomorphism.

PROBLEM 2.
Let \(R \) be the ring \(\mathbb{Q}[x] \) and let \(M \) be the submodule of \(R^2 \) generated by the elements \((1 - 2x, -x^2)\) and \((1 - x, x - x^2)\). According to the theory of modules over principal ideal domains, \(R^2/M \) is a direct sum of cyclic \(R \) modules of the form \(R/P(x) \) for monic polynomials \(P(x) \). Find such a direct sum decomposition explicitly in this case.

PROBLEM 3.
Suppose we are given a collection of polynomials in \(r \) variables with rational coefficients:
\[
 f_1, \ldots, f_N \in \mathbb{Q}[T_1, \ldots, T_r].
\]
We define the complex algebraic set \(V_C \subset \mathbb{C}^r \) by
\[
 V_C = \{(a_1, \ldots, a_r) \mid f_i(a_1, \ldots, a_r) = 0 \text{ for all } i \text{ from } 1 \text{ to } N\}.
\]
Suppose \(V_C \) is not empty. Show that there is a finite extension \(K \) of \(\mathbb{Q} \) and a point \((a_1, \ldots, a_r) \in V_C \) with all \(a_k \in K \).
LINEAR ALGEBRA

PROBLEM 1.
(a) For which $z \in \mathbb{C}$ is
\[
\begin{pmatrix}
1 & 2z \\
z - 1 & 1
\end{pmatrix}
\]
not similar over \mathbb{C} to a diagonal matrix? Justify your answer.

(b) Let J_n be the $n \times n$ matrix each of whose entries is 1. Determine those $n \in \mathbb{Z}^+$ for which J_n is diagonalizable over \mathbb{C} and give a diagonal matrix that is similar to J_n for such n.

PROBLEM 2.
Find an explicit formula for the determinant of a 3×3 complex matrix A as a polynomial in the traces $t_n = \text{Tr}(A^n)$ for $n = 1, 2, \ldots$.

PROBLEM 3.
Let V be a vector space over \mathbb{C} of dimension $d > 0$. Suppose that A, B, C are linear operators on V such that

\[AB - BA = C.\]

Suppose also that C commutes with both A and B. If V has no proper non-zero subspace that is left stable under all three operators, show that $d = 1$.

3
FIELD THEORY

PROBLEM 1.
Let K be a finite extension of \mathbb{Q} obtained by adjoining to \mathbb{Q} a root of $f(x) = x^6 + 3$.

(a) Show that K contains a primitive 6-th root of unity.

(b) Show that K is a Galois extension of \mathbb{Q}.

(c) Determine the number of fields F of degree 3 over \mathbb{Q} with $F \subseteq K$.

PROBLEM 2.
Suppose that $f(x)$ is a polynomial in $\mathbb{Q}[x]$ of degree $d > 1$ with d roots x_1, \ldots, x_d in \mathbb{C}. If $x_2 = ax_1$ for $a \in \mathbb{Q}$ different from -1, prove that $f(x)$ is reducible.

PROBLEM 3.
Let K be a field and L a finite extension of K. Consider the set A of all elements $x \in L$ with the property that $K[x]$ is a Galois extension of K with an abelian Galois group $\text{Gal}(K[x]/K)$. Show that A is a subfield of L containing K.