Please do the following ten problems. Write your UID number ONLY, not your name.

(1.) Let \(L : C \to D \) be a functor, left adjoint to \(R : D \to C \). Show: if the counit \(L \circ R \to id_D \) is a natural isomorphism, then \(R \) is fully faithful.

(2.) Let \(A \) be a central division algebra (of finite dimension) over a field \(k \). Let \([A, A] \) be the \(k \)-subspace of \(A \) spanned by the elements \(ab - ba \) with \(a, b \in A \). Show that \([A, A] \neq A \).

(3.) Given \(\phi : A \to B \) a surjective morphism of rings, show that the image by \(\phi \) of the Jacobson radical of \(A \) is contained in the Jacobson radical of \(B \).

(4.) Let \(G \) be a group and \(H \) a normal subgroup of \(G \). Let \(k \) be a field and let \(V \) be an irreducible representation of \(G \) over \(k \). Show that the restriction of \(V \) to \(H \) is semisimple.

(5.) Let \(G \) be a finite group acting transitively on a finite set \(X \). Let \(x \in X \) and let \(P \) be a Sylow \(p \)-subgroup of the stabilizer of \(x \) in \(G \). Show that \(N_G(P) \) acts transitively on \(X^P \).

(6.) Let \(A \) be a ring and \(M \) a noetherian \(A \)-module. Show that any surjective morphism of \(A \)-modules \(M \to M \) is an isomorphism.

(7.) Let \(G \) be a finite group and let \(s, t \in G \) be two distinct elements of order 2. Show that the subgroup of \(G \) generated by \(s \) and \(t \) is a dihedral group. (Recall that the dihedral groups are the groups \(D(m) = \langle g, h \mid g^2 = h^2 = (gh)^m = 1 \rangle \) for some \(m \geq 2 \)).

(8.) Let \(F \) be a finite field. Without using any of the theorems on finite fields, show that \(F \) has a field extension of degree 2.

(9.) Let \(G \) be a finite group. Show that there exist fields \(F \subset E \) such that \(E/F \) is Galois with group \(G \).

(10.) Let \(F \) be a field. Show that the polynomial ring \(F[t] \) has infinitely many prime ideals. Also prove that algebraically closed fields are infinite.