Instructions:

For a Ph.D. pass do 4 problems from each section to a total of 8 problems. For a M.A. pass do 2 from one and 3 from the other section to a total of 5 problems.

Geometry

1. Let M be a closed (compact, without boundary) manifold. Show that any smooth function

 $$f : M \to \mathbb{R}$$

 has a critical point.

2. (a) Show that every closed 1-form on S^n, $n > 1$, is exact.

 (b) Use this to show that every closed 1-form on $\mathbb{R}P^n$, $n > 1$, is exact.

3. Let M^d be a d-dimensional manifold and $\omega_1, \ldots, \omega_p$ be pointwise linearly independent 1-forms. If $\theta_1, \ldots, \theta_p$ are 1-forms so that

 $$\sum_{i=1}^{p} \omega_i \wedge \theta_i = 0,$$

 then there exist smooth functions f_{ij} so that

 $$\theta_i = \sum_{j=1}^{p} f_{ij} \omega_j, \quad i = 1, \ldots, p.$$

 (Hint: try $p = 1$)

4. Let M be the set of all straight lines in \mathbb{R}^2 (not just those which pass through the origin). Show that M is a smooth manifold and identify it with a well-known manifold.

 (Hint: Lines not through the origin have a unique closest point to the origin and that point determines the line uniquely. What happens at the origin?)

5. Let $f : M^n \to N^n$ be a smooth bijection so that $Df : T_p M \to T_{f(p)} N$ is injective for all p. Show that f is a diffeomorphism.
6. (a) Show that if \(f : S^n \to S^n \) has no fixed points then \(\text{deg}(f) = (-1)^{n+1} \).

(b) Show that if \(X \) has \(S^{2n} \) as universal covering space then \(\pi_1(X) = \{1\} \) or \(\mathbb{Z}_2 \).

(c) Show that if \(X \) has \(S^{2n+1} \) as universal covering space then \(X \) is orientable.

7. (a) Outline the construction of the universal covering of a path connected locally simply connected space \(X \).

(b) Give an example of a path connected space which does not have a universal covering space.

8. Let \(X \) be a finite cell complex constructed inductively by gluing all \(p \)-cells onto cells of dimension \(< p \). Assume no \(p - 1 \) and \(p + 1 \) cells are used to construct \(X \). Show that

\[
H_p(X, \mathbb{Z}) \simeq \mathbb{Z}^{n_p}
\]

when \(n_p \) is the number of \(p \)-cells used in the construction.

9. Let \((M, \partial M)\) be a compact oriented \(n \)-manifold with connected boundary \(\partial M \). Show that there is no retract \(r : M \to \partial M \), i.e., a map \(r : M \to \partial M \) such that \(r(x) = x \) if \(x \in \partial M \).

(Hint: Prove that \(H_{n-1}(\partial M) \to H_{n-1}(M) \) is trivial.)

10. Let \(X = T^2 - \{p, q\} \), \(p \neq q \) be the twice punctured 2-dimensional torus.

(a) Compute the homology groups \(H_*(X, \mathbb{Z}) \).

(b) Compute the fundamental group of \(X \).