Instruction: All problems are worth ten points.

1. Let M be a connected smooth manifold. Construct the orientation cover M_0.
 a) Show that M_0 is a smooth manifold.
 b) Show that M_0 is a 2:1 covering of M.
 c) Show that M is orientable iff M_0 is the union of two disconnected components.

2. Let ω be a smooth nowhere vanishing 1-form on a smooth connected manifold M.
 a) Show that $\ker \omega$ is a smooth co-dimension 1 distribution on M.
 b) Show that $\ker \omega$ is integrable iff $d \omega$ vanishes on $\ker \omega$.
 c) Find a co-dimension 1 distribution on \mathbb{R}^3 that is not integrable.

3. Show that $S^1 \times S^n$ is parallelizable, i.e., one can find $(n + 1)$ vector fields that are everywhere linearly independent. ($S^k \subset \mathbb{R}^{k+1}$ is the unit sphere)

4. Let $\omega = \frac{-ydx + xdy}{(x^2 + y^2)\alpha}$ and consider $\int_{\gamma} \omega$, where $\gamma : S^1 \to \mathbb{R}^2 - \{0\}$.
 a) For which α is $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$, whenever γ_1 and γ_2 are smoothly homotopic, i.e., then exists $F : S^1 \times [0, 1] \to \mathbb{R}^2 - \{0\}$ such that $\gamma_0(t) = F(t, 0)$, $\gamma_1(t) = F(t, 1)$?
 b) What are the possible values for $\int_{\gamma} \omega$ when α is chosen as in part a)?

5. Show that a closed (compact without boundary) n-manifold cannot be immersed in \mathbb{R}^n.

6. Let \(\mathbb{C}^* \) be the set of all non-zero complex numbers with the induced topology from \(\mathbb{C} \). It is a topological group with respect to the usual multiplication. Let \(f \) be a continuous homomorphism from \(\mathbb{C}^* \) to itself.

 (i) Find all possible \(f|_{S^1} \), where \(S^1 = \{ z \mid |z| = 1, z \in \mathbb{C}^* \} \).

 (ii) Classify such \(f|_{S^1} \) up to homotopy.

7. Let \(X_1 = S^1 \vee_{x_1=x_2} S^2 \) be the space obtained from the disjoint union of the circle \(S^1 \) and the \(S^2 \) by identifying a point \(x_1 \in S^1 \) with a point \(x_2 \in S^2 \). Define \(X_2 = S^1 \vee_{x_1=x_2} S^1 \) similarly.

 (i) Find \(\pi_1(X_1) \) and \(\pi_1(X_2) \).

 (ii) Find their universal coverings.

8. Let \(f : S^2 \to T^2 \) be a continuous map from 2-sphere to 2-torus \(T^2 \).

 What is the induced map

 \[
 f_* : H_*(S^2) \to H_*(T^2)
 \]

 on the homology groups?

9. Let \(X \) be a topological space, and define \(S(X) \) to be the quotient space of \(X \times I \) by contracting \(X \times \{0\} \) to a point and \(X \times \{1\} \) to another point. Here \(I = [0,1] \).

 What is the relationship between \(H_*(S(x)) \) and \(H_*(x) \)?

10. Let \(K \) be a finite simplicial complex and \(K^n \) be the subcomplex consisting of all simplices in \(K \) of dimension less than or equal to \(n \). Denote the underlying topological spaces of \(K \) and \(K^n \) by \(|K| \) and \(|K^n| \).

 (i) What is the relative singular homology \(H_*(|K^n|,|K^{n-1}|) \)?

 (ii) Write down the long exact sequence for the triple \((|K^n|,|K^{n-1}|,|K^{n-2}|)\), i.e. , the long exact sequence relating the singular homology groups \(H_*(|K^n|,|K^{n-1}|) \), \(H_*(|K^{n-1}|,|K^{n-2}|) \) and \(H_*(|K^n|,|K^{n-2}|) \).

 (iii) Use (i) and (ii) to show that singular homology of \(|K| \) is same as the simplicial homology of \(|K| \). (Hint: identify the connecting boundary map in (ii)).