Qualifying Exam
GEOMETRY-TOPOLOGY
March 2009

Instructions: Do any ten of the following twelve problems. Please do not turn in work on more than ten problems and label each problem carefully by its number. Start each problem on a new page.

1. (a) Show that a closed 1-form θ on $S^1 \times (-1,1)$ is dF for some function $F: S^1 \times (-1,1) \to \mathbb{R}$ if and only if $\int_{S^1} i^* \theta = 0$ where $i: S^1 \to S^1 \times (-1,1)$ is defined by $i(p) = (p,0)$ for $p \in S^1$. (b) Show that a 2-form ω on S^2 is $d\theta$ for some 1-form θ on S^1 if and only if $\int_{S^2} \omega = 0$.

2. Suppose that M, N are connected C^∞ manifolds of the same dimension $n \geq 1$ and $F: M \to N$ is a C^∞ map such that $dF: T_p M \to T_{F(p)} N$ is surjective for each $p \in M$. (a) Prove that if M is compact, then F is onto and F is a covering map. (b) Find an example of such an everywhere nonsingular equidimensional map where N is compact, F is onto, $F^{-1}(p)$ is finite for each $p \in N$, but F is not a covering map. [A clearly explained pictorial version of F will be acceptable; you do not need to have a "formula" for F.]

3. (a) Suppose that M is a C^∞ connected manifold. Prove that, given an open subset U of M and a finite set of points p_1, p_2, \ldots, p_k in U, there is a diffeomorphism $F: M \to M$ such that $f(\{p_1, p_2, \ldots, p_k\}) \subset U$. [Suggestion: Construct F one point at a time.] (b) Use part (a) to show that if M is compact and the Euler characteristic $\chi(M) = 0$, then there is a vector field on M which vanishes nowhere. You may assume that if a vector field has isolated zeros, then the sum of the indices at the zero points equals $\chi(M)$.

4. A smooth vector field V on \mathbb{R}^3 is said to be "gradient-like" if, for each $p \in \mathbb{R}^3$, there is a neighborhood U_p of p and a function $\lambda_p: U_p \to \mathbb{R} - \{0\}$ such that $\lambda_p V$ on U_p is the gradient of some C^∞ function on U_p. Suppose V is nowhere zero on \mathbb{R}^3. Then show that V is gradient-like if and only if $\text{curl} V$ is perpendicular to V at each point of \mathbb{R}^3.

5. Suppose that M is a compact C^∞ manifold of dimension n. (a) Show that there is a positive integer k such that there is an immersion $F: M \to \mathbb{R}^k$. (b) Show that if $k > 2n$, there is a $(k-1)$-dimensional subspace H of \mathbb{R}^k such that $P \circ F$ is an immersion, where $P: \mathbb{R}^k \to H$ is orthogonal projection.

6. Let $GL^+(n, \mathbb{R})$ be the set of $n \times n$ matrices with determinant > 0. Note that $GL^+(n, \mathbb{R})$ can be considered to be a subset of \mathbb{R}^{n^2} and this subset is open. (a) Prove that $SL^+(n, \mathbb{R}) = \{ A \in GL^+(n, \mathbb{R}): \det A = 1 \}$ is a submanifold. (b) Identify the tangent space of $SL^+(n, \mathbb{R})$ at the identity matrix I_n. (c) Prove that, for every $n \times n$ matrix B, the series $I_n + B + \frac{1}{2} B^2 + \frac{1}{3!} B^3 + \cdots + \frac{1}{n!} B^n \cdots$ converges to some $n \times n$ matrix. Notation: this sum $= e^B$. (d) Prove that if $e^{tB} \in SL^+(n, \mathbb{R})$ for all $t \in \mathbb{R}$,
then \(\text{trace } B = 0 \). (e) Prove that if \(\text{trace } B = 0 \), then \(e^B \in SL^+(n, \mathbb{R}) \). [Suggestion: Use one-parameter subgroups or note that it suffices to treat complex-diagonale \(B \) since such are dense.]

7. (a) Define complex projective space \(\mathbb{CP}^n \). (b) Calculate the homology of \(\mathbb{CP}^n \). Any systematic method such as Mayer-Vietoris or cellular homology is acceptable.

8. Let \(p: E \to B \) be a covering space and \(f: X \to B \) a map. Define \(E^* = \{(x, e) \in X \times B : f(x) = p(e)\} \). Prove that \(q: E^* \to X \) defined by \(q(x, e) = x \) is a covering space.

9. (a) Explain carefully and concretely what it means for two (smooth) maps of \(S^1 \) into \(\mathbb{R}^2 \) to be transversal. (b) Do the same for maps of \(S^1 \) into \(\mathbb{R}^3 \). (c) Explain what it means for transversal maps to be "generic" and prove that they are indeed generic in the cases of 9(a) and 9(b).

10. Let \(M \) be the 3-manifold with boundary obtained as the union of the two-holed torus in 3-space and the bounded component of its complement. Let \(X \) be the space obtained from \(M \) by deleting \(k \) points from the interior of \(M \). (a) Calculate the fundamental group of \(X \). (b) Calculate the homology of \(X \).

11. Let \(P \) be a finite polyhedron. (a) Define the Euler characteristic \(\chi(\mathcal{P}) \) of \(\mathcal{P} \). (b) Prove that if \(P_1, P_2 \) are subpolyhedra of \(\mathcal{P} \) such that \(P_1 \cap P_2 \) is a point and \(P_1 \cup P_2 = \mathcal{P} \), then \(\chi(\mathcal{P}) = \chi(P_1) + \chi(P_2) - 1 \). (c) Suppose that \(p: E \to \mathcal{P} \) is an \(n \)-sheeted covering space of \(\mathcal{P} \), that is \(p^{-1}(x) \) is \(n \) points for each \(x \in \mathcal{P} \). Prove that \(\chi(E) = n\chi(\mathcal{P}) \).

12. Let \(f: T \to T = S^1 \times S^1 \) be a map of the torus inducing \(f_\pi: \pi_1(T) \to \pi_1(T) = \mathbb{Z} \oplus \mathbb{Z} \) and let \(F \) be a matrix representing \(f_\pi \). Prove that the determinant of \(F \) equals the degree of the map of the map \(f \).