Answer all 10 questions. Each problem is worth 10 points. Justify your answers carefully.

1. Let $f : M \to N$ be a nonsingular smooth map between connected manifolds of the same dimension. Answer the following questions with a proof or counter-example.
 (a) Is f necessarily injective or surjective?
 (b) Is f necessarily a covering map when N is compact?
 (c) Is f necessarily an open map?
 (d) Is f necessarily a closed map?

2. Let M be a connected compact manifold with non-empty boundary ∂M. Show that M does not retract onto ∂M.

3. Let $M, N \subset \mathbb{R}^{p+1}$ be two compact, smooth, oriented submanifolds of dimensions m and n, respectively, such that $m + n = p$. Suppose that $M \cap N = \emptyset$. Consider the linking map
 $$\lambda : M \times N \to S^p, \quad \lambda(x, y) = \frac{x - y}{\|x - y\|}.$$
 The degree of λ is called the linking number $l(M, N)$.
 (a) Show that $l(M, N) = (-1)^{(m+1)(n+1)}l(N, M)$.
 (b) Show that if M is the boundary of an oriented submanifold $W \subset \mathbb{R}^{p+1}$ disjoint from N, then $l(M, N) = 0$.

4. Let ω be a 1-form on a connected manifold M. Show that ω is exact, i.e., $\omega = df$ for some function f, if and only if for all piecewise smooth closed curves $c : S^1 \to M$ it follows that $\int_c \omega = 0$.

5. Let ω be a smooth, nowhere vanishing 1-form on a three-dimensional smooth manifold M^3.
 (a) Show that $\text{ker } \omega$ is an integrable distribution on M if and only if $\omega \wedge d\omega = 0$.
 (b) Give an example of a codimension one distribution on \mathbb{R}^3 that is not integrable.
6. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a smooth function.

(a) Define the gradient \(\nabla f \) as a vector field dual to the differential \(df \).

(b) Define the Hessian \(\text{Hess} f (X, Y) \) as a symmetric \((0, 2)\)- tensor.

(c) If the usual Euclidean inner product between tangent vectors in \(T_p \mathbb{R}^n \) is denoted \(g (X, Y) = X \cdot Y \) show that
\[
\text{Hess} f (X, Y) = \frac{1}{2} (\mathcal{L}_{\nabla f} g) (X, Y)
\]
Here \(\mathcal{L}_Z g \) is the Lie derivative of \(g \) in the direction of \(Z \).

7. Let \(M = T^2 - D^2 \) be the complement of a disk inside the two-torus. Determine all connected surfaces that can be described as 3-fold covers of \(M \).

8. Let \(n > 0 \) be an integer and let \(A \) be an abelian group with a finite presentation by generators and relations. Show that there exists a topological space \(X \) with \(H_n(X) \cong A \).

9. Let \(H \subset S^3 \) be the Hopf link, shown in the figure

\[
\begin{tikzpicture}
 \draw (0,0) circle (1);
 \draw (1,0) circle (1);
 \draw (0.5,0) -- (0.5,1);
\end{tikzpicture}
\]

Compute the fundamental group and the homology groups of the complement \(S^3 - H \).

10. Let \(\mathbb{H} = \mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} k \) be the group of quaternions, with relations \(i^2 = j^2 = -1, \ ij = -ji = k \). The multiplicative group \(\mathbb{H}^* = \mathbb{H} - \{0\} \) acts on \(\mathbb{H}^n - \{0\} \) by left multiplication. The quotient \(\mathbb{H}P^{n-1} = (\mathbb{H}^n - \{0\})/\mathbb{H}^* \) is called the quaternionic projective space. Calculate its homology groups.