Attempt all ten problems. Each problem is worth 10 points. Justify your answers carefully.

1. Suppose that M and N are connected smooth manifolds of the same dimension and $f : M \to N$ is a smooth submersion.
 (a) Prove that if M is compact, then f is onto and f is a covering map.
 (b) Give an example of a smooth submersion $f : M \to N$ such that M and N have the same dimension, N is compact, and f is onto, but f is not a covering map.

2. Let $\Phi_N, \Phi_S : \mathbb{R} \times S^2 \to S^2$ be two global flows on the sphere S^2. Show that there exist $\epsilon > 0$, a neighborhood U of the North pole, a neighborhood V of the South pole, and a global flow $\Phi : \mathbb{R} \times S^2 \to S^2$ such that $\Phi(t, q) = \Phi_N(t, q)$ for all $t \in (-\epsilon, \epsilon), q \in U$, and $\Phi(t, q) = \Phi_S(t, q)$ for all $t \in (-\epsilon, \epsilon), q \in V$.

3. For $n \geq 1$, consider the subset $X \subset \mathbb{CP}^{2n}$ given by
 $$X = \{[z_0 : z_1 : \cdots : z_{2n}] \in \mathbb{CP}^{2n} \mid z_{n+1} = z_{n+2} = \cdots = z_{2n} = 0\}.$$
 (a) Show that X is a smooth submanifold.
 (b) Calculate the mod 2 intersection number of X with itself.

4. Suppose N is a smoothly embedded submanifold of a smooth manifold M. A vector field X on M is called tangent to N if $X_p \in T_p N \subset T_p M$ for all $p \in M$.
 (a) Show that if X and Y are vector fields on M both tangent to N, then $[X, Y]$ is also tangent to N.
 (b) Illustrate this principle by choosing two vector fields X, Y tangent to $S^2 \subset \mathbb{R}^3$ (such that $[X, Y]$ is not identically zero), computing $[X, Y]$ and checking that it is tangent to S^2.

5. A symplectic form on an eight-dimensional manifold is defined to be a closed two-form ω such that $\omega \wedge \omega \wedge \omega \wedge \omega$ is a volume form (that is, everywhere nonvanishing). Determine which of the following manifolds admit symplectic forms: (a) S^8; (b) $S^2 \times S^6$; (c) $S^2 \times S^2 \times S^2 \times S^2$.

6. Let U be a bounded open set in \mathbb{R}^3 with smooth boundary, and let V be a smooth vector field on \mathbb{R}^3. The classical divergence theorem expresses the triple integral $\iiint_V \text{div} V \, d(\text{vol})$ as a surface integral over the boundary of V. State this theorem, and show how it can be obtained as a particular case of Stokes’ Theorem for differential forms.

7. Let M and N be smooth, connected, orientable n-manifolds for $n \geq 3$, and let $M \# N$ denote their connect sum.
 (a) Compute the fundamental group of $M \# N$ in terms of that of M and of N (you may assume that the basepoint is on the boundary sphere along which we glue M and N).
(b) Compute the homology groups of \(M \# N \). (You may use without proof that \(H_n(-; \mathbb{Z}) \) of a connected orientable \(n \)-manifold is always isomorphic to \(\mathbb{Z} \)).

(c) For part (a), what changes if \(n = 2 \)? Use this to describe the fundamental groups of orientable surfaces.

8. Determine all of the possible degrees of maps \(S^2 \to S^1 \times S^1 \).

9. Point \(S^2 \) via the south pole, and consider the Cartesian product \(S^2 \times S^2 \).

(a) Describe a cell structure on \(S^2 \times S^2 \) that is compatible with the inclusion of

\[S^2 \vee S^2 \hookrightarrow S^2 \times S^2 \]

as those pairs where one coordinate is the south pole.

(b) Let \(X \) be \((S^2 \times S^2) \cup_{S^2} D^3 \), where we attach the 3-disk via the map

\[S^2 \to S^2 \vee S^2 \]

which crushes a great circle connecting the north and south poles. Compute the homology groups of \(X \).

10. Let \(X \) be a semi-locally simply connected space and let \(\tilde{X} \to X \) be the universal cover.

(a) Show that any map \(\sigma: \Delta^n \to X \) lifts to a map \(\tilde{\sigma}: \Delta^n \to \tilde{X} \), where \(\Delta^n \) is the standard \(n \)-simplex.

(b) Show that if \(\tilde{\sigma}_1, \tilde{\sigma}_2: \Delta^n \to \tilde{X} \) are two lifts of \(\sigma \), then there is an element \(g \) of the fundamental group of \(X \) such that \(g \circ \tilde{\sigma}_1 = \tilde{\sigma}_2 \), where we view \(g \) as an automorphism of \(\tilde{X} \) via the deck transformations.