Problem 1. Prove that there is no formula \(\varphi(v, u) \) so that \((\mathbb{N}; 0, 1, +) \models \varphi[x, y] \) iff \(x \) divides \(y \).

Problem 2. Let \(\mathcal{L} \) be the language of graphs; the only non-logical symbol of the language is a binary relation symbol, \(E \).

(2a) For which \(n < \omega \) is there a finitely axiomatizable theory \(T_n \) in \(\mathcal{L} \), so that the models of \(T_n \) are exactly the \(n \)-colorable graphs?

(2b) Construct an \(\omega \)-saturated model \(A = (A; E_A) \) of \(\mathcal{L} \), so that for every \(n < \omega \) there is a definable (from parameters) set \(D_n \subseteq A \), so that \((D_n; E_A \upharpoonright D_n) \) forms a graph which is \(n + 1 \)-colorable but not \(n \)-colorable.

Problem 3. Say that a formula \(\varphi(v_1, \ldots, v_l, u) \) in the language of set theory defines a set \(x \) from parameters \(a_1, \ldots, a_l, \) and \(x \) is definable from \(a_1, \ldots, a_l \), if \(\varphi(a_1, \ldots, a_l, x) \) holds (in \(V \)) and for every \(y \neq x, \varphi(a_1, \ldots, a_l, y) \) fails.

(3a) Suppose there is a model of \(\text{ZFC} \). Prove there is a model of \(\text{ZFC} \) in which every set is definable from ordinal parameters.

(3b) Prove that if \(x \) is definable from ordinal parameters, then it is definable from ordinal parameters by a \(\Sigma_2 \) formula.

Problem 4. Assume \(\text{AC} \). Assume that \(\aleph_1^{\aleph_0} = \aleph_2 \) and \((\forall \alpha < \aleph_2) \alpha^{\aleph_0} = \aleph_1 \) (under \(\text{AC} \) these are consequences of the GCH).

(4a) Prove that there is a sequence \(\langle A_\xi \mid \xi < \omega_2 \rangle \) of bounded subsets of \(\aleph_2 \) so that for every \(A \subseteq \aleph_2 \), there is a club of \(\gamma < \aleph_2 \) so that \((\forall \beta < \gamma) A \cap \beta \in \{A_\xi \mid \xi < \gamma \} \).

(4b) Prove that there is a sequence \(\langle F_\alpha \mid \alpha < \omega_2, \text{cof}(\alpha) = \omega \rangle \) so that each \(F_\alpha \) is a family of subsets of \(\alpha, |F_\alpha| \leq \aleph_1 \), and for each \(A \subseteq \aleph_2 \), \(\{\alpha < \aleph_2 \mid A \cap \alpha \in F_\alpha \} \) is stationary.

Problem 5. Let \(\varphi_i \) be the \(i \)-th partial recursive function from \(\omega \) to \(\omega \). Let \(T = \{i : \varphi_i \text{ is total}\} \). Show that every \(\Pi_2 \) subset of \(\omega \) is many-one reducible to \(T \).

Problem 6. Let \(W_i \) be the \(i \)-th computably enumerable set. Say that \(i \) is a minimal index if for all \(j < i \), \(W_j \neq W_i \).

(6a) Show that \(\{i : i \text{ is a minimal index}\} \) contains no infinite computably enumerable subset.

(6b) Show that there are only finitely many \(i \) such that \(\text{PA} \) proves “\(i \) is a minimal index”.

Problem 7. Let \(\text{Prov}_{\text{PA}}(n) \) be the formula of arithmetic asserting that there is a proof of the formula with \(\text{G"{o}del} \) number \(n \) from \(\text{PA} \). Let \(\ulcorner \varphi \urcorner \) indicate the (numeral of the) \(\text{G"{o}del} \) number of the formula \(\varphi \). You may use that the provability predicate satisfies the following three properties for all sentences \(\varphi \) and \(\psi \):
(1) If $\text{PA} \vdash \varphi$, then $\text{PA} \vdash \text{Prov}_{\text{PA}}(\varphi^\frown)$.
(2) If $\text{PA} \vdash \text{Prov}_{\text{PA}}(\varphi \rightarrow \psi^\frown)$, then $\text{PA} \vdash \text{Prov}_{\text{PA}}(\varphi^\frown) \rightarrow \text{Prov}_{\text{PA}}(\psi^\frown)$.
(3) $\text{PA} \vdash \text{Prov}_{\text{PA}}(\varphi^\frown) \rightarrow \text{Prov}_{\text{PA}}(\varphi^\frown)$.

(7a) Fix a sentence φ. Find a sentence θ so that $\text{PA} \vdash \theta \leftrightarrow (\text{Prov}_{\text{PA}}(\theta^\frown) \rightarrow \varphi)$.

(7b) Assuming $\text{PA} \vdash \text{Prov}_{\text{PA}}(\varphi^\frown) \rightarrow \varphi$, show that θ is provable from PA. Use this to derive Löb’s theorem that if $\text{PA} \vdash \text{Prov}_{\text{PA}}(\varphi^\frown) \rightarrow \varphi$, then $\text{PA} \vdash \varphi$.

(7c) Give a sentence φ so that PA does not prove $\varphi \rightarrow \text{Prov}_{\text{PA}}(\varphi^\frown)$.

Problem 8. A structure \mathcal{A} is computable if its universe A is a computable subset of ω, and its functions, relations, and constants are uniformly computable. (Or equivalently, the atomic diagram of A is computable.) Show there is no computable model of ZFC.