DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.
Do all 7 problems.

Problems 1-3 are worth 5 points; problems 4-7 are worth 10 points.
All problems will be graded and counted towards the final score.
You have to demonstrate a sufficient amount of work on both groups of problems [1-3] and [4-7].

[1] (5 Pts.) The following code, implementing the bisection method, was used to find the roots of
\[x^2 - 2x + 1 = 0 \]
using an initial interval of \(a = -1.0 \) and \(b = 0.0 \). The result was

Approximate root of \(x^2 - 2x + 1 \) is \(-0.0000009537\)

(a) Is this program running correctly, and if not, what is the cause of the problem?

```matlab
% bisect.m
fstring = 'x^2-2*x+1';  % target function
a = -1.0;                % left starting endpoint
b = 0.0;                 % right starting endpoint
eps = 1.0e-06;           % root error bound tolerance
c = (a+b)/2.0;           % midpoint = approximate root
nMax = 100;              % allow only nMax iterations
n = 0;
while(abs(b-a) > 2.0*eps) & (n < nMax)
    eval(['x = a;',fstring,'];']); fa = ans;  % evaluate the function at a
    eval(['x = c;',fstring,'];']); fc = ans;  % evaluate the function at c
    if(fa*fc <= 0)                 % a root lies in the left interval
        b = c;
    else                            % a root lies in the right interval
        a = c;
    end
    c = (a+b)/2.0;                 % midpoint = approximate root
    n = n+1;
end
sprintf(['Approximate root of ',fstring,' is %%.10f \
',c])
```
2 (5 Pts.) Gauss-Laguerre quadrature rules have the form

\[\int_0^\infty x^\alpha e^{-x} f(x) \, dx \simeq \sum_{j=1}^N w_j f(x_j) \]

where \(\alpha \) is a constant.

(a) Consider using such formulas to create approximations to integrals of the form

\[\int_0^\infty g(x) \, dx. \]

Give the nodes and weights, \(\tilde{x}_j \) and \(\tilde{w}_j \), (derived from the nodes and weights of the Gauss-Laguerre rule) that give rise to approximations of the form

\[\int_0^\infty g(x) \, dx \simeq \sum_{j=1}^N \tilde{w}_j g(\tilde{x}_j) \]

(b) For what types of functions will the integration rules you derived in (a) be exact?

3 (5 Pts.) Consider the task of approximating a function \(f(x) \) by a linear combination of \(N \) functions \(q_k(x) \), \(k = 1 \ldots N \), e.g.

\[f(x) \simeq \sum_{k=1}^N c_k q_k(x) \quad \text{for} \ x \in [0, 1] \]

(a) Give the equations that determine the \(c_k \)'s so that \(\| f(x) - \sum_{k=1}^N c_k q_k(x) \|_2 \) is minimized. (The norm is taken over the interval \([0, 1]\).)

(b) How would you solve the resulting equations?
[4] (10 Pts.) Consider the linear two-step method

\[y_{n+2} - 3y_{n+1} + 2y_n = h \left[\frac{13}{12} f(t_{n+2}, y_{n+2}) - \frac{5}{3} f(t_{n+1}, y_{n+1}) - \frac{5}{12} f(t_n, y_n) \right], \]

for solving \(y'(t) = f(t, y(t)), \ y(t_0) = y_0. \)

(a) Show that the order of the method is 2.

(b) Is this method convergent?

(c) How would the numerical scheme perform when applied to the simple example \(y'(t) = 0, \ y(0) = 1 \) with the initial conditions \(y_0 = 1 \) and \(y_1 \neq y_0 \) obtained using a one-step method in the presence of roundoff errors? Justify your answers.

[5] (10 Pts.) Consider the equation

\[u_{tt} = au_{xx} + 2bu_{xy} + cu_{yy} \]

to be solved for \(t > 0, \ 0 \leq x \leq 1, \ 0 \leq y \leq 1 \) with initial data:

\[u(x, y, 0) = u_0(x, y) \]
\[u_t(x, y, 0) = u_1(x, y) \]

and periodic boundary conditions

\[u(x + 1, y, t) = u(x, y, t) \]
\[u(x, y + 1, t) = u(x, y, t) \]

(a) For what values of the constants \(a, b, c \) is this a well posed problem?

(b) Write a stable convergent finite difference scheme for this problem.

Justify your answers.
[6] (10 Pts.) Consider the nonlinear equation

\[u_t + \left(\frac{u^2}{2}\right)_x = bu_{xx} \]

to be solved for \(t > 0, \ 0 \leq x \leq 1 \) with initial data

\[u(x, 0) = u_0(x) \]

and periodic boundary conditions

\[u(x + 1, t) \equiv u(x, t), \]

for \(b > 0 \), a positive constant

(a) Write a finite difference approximation to this problem that satisfies a maximum and minimum principle for all \(b > 0 \).

(b) As \(b \) goes to zero, what difficulties do you expect to see with solutions to the finite difference approximation

\[\frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{(u_{i+1}^n)^2 - (u_{i-1}^n)^2}{4\Delta x} = \frac{b(u_{i+1}^n - 2u_i^n + u_{i-1}^n)}{(\Delta x)^2} \]

[7] (10 Pts.) Let \(\Omega \) be an open, bounded and connected subset of \(\mathbb{R}^2 \), with sufficiently smooth boundary. Consider the problem

\[-\frac{\partial}{\partial x} \left((1 + 2x^2 + 3y^4)u_x \right) - u_{yy} = f \text{ in } \Omega, \]

\[(1 + 2x^2 + 3y^4)u_x n_x + u_y n_y + \lambda u = g \text{ on } \Gamma = \partial\Omega, \]

where \(f \in L^2(\Omega) \), \(g \in L^2(\Gamma) \), \(\vec{n} = (n_x, n_y) \) is the outward unit normal to \(\partial\Omega \), and \(\lambda \geq 0 \) is a constant.

(a) Give weak variational formulations of the problem, by considering the cases \(\lambda = 0 \) and \(\lambda > 0 \). Show that each of these formulations have one and only one solution (under additional conditions on \(u \), \(f \) or \(g \) if necessary, that you will specify).

(b) In the case \(\lambda > 0 \), describe a FE approximation using \(P_1 \) elements, and a set of basis functions such that the corresponding linear system is sparse. In particular show that the corresponding finite dimensional problem has a unique solution.

(c) What would be a standard error estimate for (b) with \(P_1 \) elements function of the meshsize \(h \) ? (assuming convexity and sufficient regularity of \(\Omega \) and of its boundary \(\Gamma \)).